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FINITE ELEMENT APPROXIMATION OF DIFFUSION 
EQUATIONS WITH CONVOLUTION TERMS 

MALGORZATA PESZYNSKA 

ABSTRACT. Approximation of solutions to diffusion equations with memory 
represented by convolution integral terms is considered. Such problems arise 
from modeling of flows in fissured media. Convergence of the method is proved 
and results of numerical experiments confirming the theoretical results are pre- 
sented. The advantages of implementation of the algorithm in a multiprocess- 
ing environment are discussed. 

1. INTRODUCTION 

We present a convergent method of-fully-discrete approximation of solutions of 
diffusion equations with integral convolution terms. Equations of this type arise in 
the modeling of evolution phenomena where memory effects occur. In our research 
we were motivated by a problem of diffusion in fissured media described in [14] (see 
also [3, 25]) in the form 

(1) ut +Lut-V (DVu)= f(x,t) , (xt) E, 

where u is the unknown density or concentration of the fluid, ut = au D is the 
diffusivity tensor and f is the external source term. L is the convolution operator 

It 
Lv = T * v = T(s)v(t - s)ds 

with kernel T which is a continuous real-valued integrable function. Its values are 
derived from microscopic properties of the domain of the flow; see [14, 25]. The 
equation is to be solved in the cylinder Q = Q x I with time interval I = (0, T) and 
open bounded spatial domain Q C Rd, d = 2,3, with smooth boundary F = &Q. 
The homogeneous Dirichlet boundary condition and the initial condition 

(2) u(x,t) = 0 , x F, t E I, 

(3) U (x, ) = U (x), x C-Q 

complete the model. 
Note that the equation (1) for T 0 0 (or T equal to the Dirac distribution) 

reduces to the standard diffusion equation. The diffusion equation is derived on 
the assumption that the response of the solutions to the control components of the 
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model is "instantaneous." It is well known that real-world phenomena are rarely in- 
stantaneous, and it is important to consider methods of analysis and approximation 
applicable to problems where memory effects occur. 

In modeling of flows in fissured media one has to take into account the "history 
of the flow". In distributed microstructure models of flows in fissured media (for 
modeling, analysis and approximation see [1, 30]) the history is modeled by coupling 
with the microstructure, and the model has a structure different from (1). (For the 
discussion of both models see [2, 25].) The memory effects in (1) are represented 
by the convolution integral term Lut. The graph of the convolution kernel T met 
in applications lies usually between the two extremes, i.e., "between" T- 0 and 
Dirac distribution; T is positive, integrable and decreasing, in general unbounded 
with a singularity at the origin. The character of T has an essential influence on 
the solution to the model. (See the discussion on patterns of flow corresponding 
to different convolution kernels in [26].) The possible singularity of T makes the 
analysis and approximation of solutions a delicate problem. 

Let T E L1(I). Then obviously the linear operator L is bounded on LP (I), p > 1. 
Moreover, if T is a positive kernel then L is monotone on L2(I) (see [12, 14, 18]). 
This property leads to the existence-uniqueness results for the problem (1)-(3) (see 
[14, 25, 28]). Our goal here is to present a method of numerical approximation of 
solutions to (1). We assume that 

(4) T E L'(I) on C(I) , T(t) > 0, Vt E I, 
T(.) is a monotone nonincreasing function. 

Our assumptions on T are slightly weaker than those required for the well-posedness 
of the model. 

We note that memory integral terms arise in different applications (e.g., theory 
of heat conduction with memory [21, 23] and homogenization limits of conservation 
laws [19, 32, 33]), but not much research has been devoted to their approximation. 
On the other hand, approximation of Volterra integrals of the type arising in vis- 
coelasticity was studied for smooth and bounded kernels in [6, 15, 22, 24, 31] and 
recently in [20, 34, 36] for more general data. Further, the author of [17] studies 
numerical approximation of convolution integrals in the framework of discretized 
operational calculus; these results however were unknown to us at the time our 
research was done. In the framework of product integration methods (see [16]), 
which we adopt here, general approximation methods for integral terms may be 
constructed. In the approximation method presented below we combine finite el- 
ements for discretization in space with a counterpart of the implicit Euler scheme 
for discretization in time, with special attention applied to the integral convolution 
terms. Except for that treatment, the technique applied below is standard for finite 
element approximation of diffusion problems (see [29, 35]). In order to decrease the 
overall computational time spent for the calculations, we suggest implementing the 
numerical algorithm in a multiprocessing environment. We address also the issue 
of computer memory storage which is critical for the implementation. We note that 
the algorithm presented in this paper provides a basis on which approximation to 
solutions of complicated models of flows can be constructed (see [26, 27]). 

The plan of the paper is as follows. In Section 2 we define the approximation to 
the solutions of (1)-(3) and prove its stability. In Section 3 the main result, i.e., 
the convergence of the fully discrete scheme, is proved. Section 4 contains results of 
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numerical experiments which confirm the convergence theorem. In the last section 
we suggest implementation ideas that improve effectiveness of the algorithm. 

Throughout the paper we use standard notation and results on Sobolev spaces 
and finite element approximation. For the details we refer, e.g., to [7]. We set 
V= Hoj(Q), H- L2(Q), and denote by (,.) the scalar product in H, by 1 the 
norm in V, by 1 the norm in H, and by cp the constant in the Poincare inequality 

IvI < cp || v II,v E V. We use H1 * |lk,m,t to denote 11 IILk((o't);Hm(Q)). 

We also refer frequently to the function T(t) = fo T(s)ds =11 T H|L1(Ot),t E I, 
and we denote CT(t) = T(t) + 1. Also, C denotes a generic positive constant, 
independent of essential quantities (in particular, of discretization parameters). 

2. DEFINITION OF APPROXIMATION 

In this section we define an approximation scheme for diffusion equations with 
convolution terms. We first pose an abstract Cauchy problem corresponding to 
(1)-(3) and prove the related stability result. Then we specify the discretization 
with respect to the time variable and the appropriate discrete counterpart of the 
convolution terms and prove stability of the defined semidiscrete scheme. 

In what follows we restrict ourselves for simplicity to plane convex polygonal 
domains Q C R2 and to constant symmetric diffusivity tensors D satisfying the 
ellipticity condition 

(5) 
2 2 

E DSjjitj > do V I = [i, 62]T c R2 , Dij = Djil I < i)j < 2 . 
i,j=l i=l 

We also assume 

(6) f EL2(), uo H2(Q) n v. 
The abstract Cauchy problem corresponding to (1)-(3) is 

(7) ut+Lut+Mu = f(t) , t>O 

(8) u(O) = uo 

with linear operator M = -V * DV defined on the domain D(M) = H2(Q) n V 
dense in H. The operator M is unbounded in H, but with the above assumptions 
on D is positive definite, and it is an isomorphism from D(M) to H. The bilinear 
form associated with M is given by 

a(u,v)= E DiQj & X 
dx, uJ v E V 

i,j=1 9i0x 

and by (5) is symmetric, continuous and V-elliptic, i.e., the following inequalities 
hold: 

a(u, u) > Ca 1 U 112 , Vu E V 

a(u, v) < ka 11 U 1111 v 11, Vu, v E V 

with positive constants Ca, ka. Also, for some constant CD > 0 we have 

a(uv) = (Mu, v) < CD 11 U H2(Q) |V| , u E D(M),v E V. 

Before proceeding to define the discrete counterpart of the problem (1)-(3) , we 
first prove the stability result for the continuous case. This result is given only 



1022 MALGORZATA PESZYNSKA 

for purposes of exposition, as its proof should make it easier to understand the 
corresponding results for the discrete case given later. For the sake of exposition 
we restrict ourselves momentarily to bounded convolution kernels, an assumption 
which is by no means necessary in our main results below. The continuous stability 
result for the general case of unbounded kernels is proven in the Appendix to this 
paper. 

Lemma 1. Let r satisfy (4) and let additionally r be differentiable and defined at 
t = 0. Let also u be a solution of (7)-(8). Then u satisfies 

u(t)I < CT (t) uol+ || f ||1,,tv 

Proof. Equation (7) can be rewritten by using properties of convolution and the 
fact that r(O) exists (the singular case is treated in the Appendix), 

(9) ut + T/ * u + T(O)u(t) - T(t)u(O) + Mu = f. 

Multiply (9) by u and integrate the resulting identity over Q to obtain 

dt ut 1Iu{(t) 2 + ((T' *u2)(t),u2(t)) +T7(O) lU(t) 12 

- 7(t) (U(0),U(t)) + (Mu(t), u(t)) = (f(t), u(t)) , t > 0. 

Now use Schwarz inequality, positive definiteness of M and the fact that T'(t) < 0 
to estimate 

(10) d+ IUIU(t)l + T(O) U(t)12 

< T(t)lU(O)HU(t))I + If(t)IIu(t)l + ((-T') * IuI)(t)Iu(t)I , t > O. 

Consider the set J = {t E I: Iu(t)I = O}. At those t E I - J, we have 

(11) dlul +,T(O)lU(t)l < 7(t)u(O)1 + lf(t)l + ((-T') * ul)(t) , t >O. 

Since the closed set J consists of accumulation points (at which the inequality (11) 
holds because the left side is zero) and a countable number of isolated points, we 
may integrate over (0, t) to obtain 

(12) Ju(t)l + T(O) j Iu(s)ids < u(0)| (I + j T(s)ds) + If(s)ids 

+ 7r(O) /Ju(s) Ids - (,r * Jul) (t) , t > 0 

The last two terms arise from a change of order of integration in the last term of 
the previous identity. Finally, positivity of T and (8) yield 

At 

Iu(t)I < uol(1 + T(t)) + ] f(s)lds = CT(t)luoi+ || f Iliot 

as desired. O 

Next we define the discretization in time. Take an integer n > 0, define the time 
step At = T/n and split I into n subintervals Ik, 1 < k < n, of length At, with 
tk = kAt. We deal with approximations of functions defined on I. The piecewise 
linear approximation of a function v defined in I is the function v- interpolating 
the discrete values v(tk), 0 < k < n, hence, linear in each 'k. The piecewise 
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constant approximation v is defined by the set of mean values 3k = Si v(s)ds 
as v(t) = V JkXk(t), where Xk(Q) denotes the characteristic function of 'k. 

Now we specify the discrete counterpart for the convolution term. Let v E L2 (I) 
and let r satisfy (4). The piecewise constant approximation to Lv is defined by the 
set of values 

Lv |I-, f(Lv) (s) ds, I < j < n. 

We set 

djk 1 A J T(t- r)Xk(r)drdt, I < j, k < n, 

so that in the particular case when v is a step function, i.e., v(t) = Zk=1 VkXk(t), 

the piecewise constant approximation Lv of Lv reads 

LvIj, = Z j,kVkv 
k=1 

Define 
def 

?lr Or+1,1 I , < r < n. 

Note that Oj,k = Oj-l,k-1 - j = j-k+1,1,j > k, hence, Oj,k = Tlj-k, so for a step 
function v we have 

LvIi, = Et/j-kVkv 

k=1 

This last representation is very convenient, because it displays the convolution char- 

acter of the discrete counterpart of L. Below we establish some auxiliary technical 

facts relevant to it. 

Lemma 2. Let T satisfy (4). Then the coefficients (r)hn- have the following 

properties: 

(i) lr > ? 0 0 < r < n; 

(ii) I-= or = 
Ek=lqh-k < T(tj) , 1 < j < n. 

(iii) Define ?9r d- r-i-jar , 1< r < n. Then O9r > 0 for r > 2, and for At 

sufficiently small, 1 + t9, > 0. Moreover, 

j-1 

(13) 1 + E Z9j-k <1+770o, 2<j<rn. 
k=1 

Proof. The first property follows directly from nonnegativity of r and the definition 

Of Oj,k, which implies Oj,k > 0 for j > k and Oj,k = 0 otherwise. 

Note that T(.) is continuous, positive and nondecreasing. By definition we have 

J J 1 r I t i 

lj-k L A 
Ijk 

= 
]t 

T(t-r) 
Zxk(r)drdt k=1 ~ k=1 Ati.k=1 

- 1 j ,J0 T(r)drdt = T T(t)dt < T(tj), 

and this implies (ii). Further, since for r > 2 the values Or,k decrease as k decreases, 

we obtain 7r = Or,l-Or+1,1 = Or+1,2-9r+ll > 0. To obtain 1+t9, = l+Tho-?71 > 0, 
it is enough to show 1 > rql or rjo > mj. While the latter is satisfied by most functions 
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met in applications, the former (which we will use) holds for all functions satisfying 
(4) and At sufficiently small. This follows because T(t) -> 0 as t -> 0 and 

1 rAt 

t1= B - (T(t + At) - T(t))dt < T(2At) < 1, 

if At is close to 0. 
To complete the proof of the lemma, we calculate 

j-1 

1+Z?9jk = l?r~-r~j- ? l?r~, 
k=1 

and so (iii) follows. E 

The above construction leads to the discrete-in-time scheme for (7)-(8). Define 
u, u2, ... , un as solutions of 

(14) ,nUj + A lj-kanUk + MUj = f3 I I < j < n 
k=1 

where OnUk denotes the quotient OnUk = Ukk-l 1 < k < n, the term uO is the 
prescribed initial data, and fi corresponds to the piecewise constant approximation 
of f defined above. Below we prove that this semidiscrete scheme is stable, and in 
the next section we show convergence of its fully discrete counterpart. Both of these 
results rely on similar ideas, applicable to discrete equations of the form similar to 
(14), with general right-hand side terms. We note also the correspondence between 
the discrete results and the proof for the continuous case given in Lemma 1. 

The following auxiliary result is a counterpart of the discrete Gronwall lemma. 

Lemma 3. For arbitrary sequences (ak)n=, (bk)kn of positive numbers such that 

aj < bj+ max ak I < k < n , 
1<k<j-1 

we have 

ai<Zbj, 1<i<n. 
j=1 

Lemma 4. Let T satisfy (4) and A\t be small. Then the solution of the discrete 
equation 

j 
(15) an V + qj r-lk nVk + MVj = Fj, 1 < j < n, 

k=1 

satisfies the estimate 

Ivil ? CT(ti)Ivoj + EAtIFjI, 1 < i < n . 
j=1 

Proof. Rewrite (15) to get (compare with (9)) 

j-1 
Vj - Vp1 _ ~?lj -k--i - rlj-k I~ l- Zv t - z)_ d At r~j_ k-1 nj-kVk + tvi - Vv Vo + Muj =Fj 

k=1 
At t 
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or, in the weak form, 

(16) -j v -v) _ E k 1 njIk (VkV) + - (VV)- a (Vo,V) A zt 
kL 1 A~tAtt 

+ (Mvj,v) = (Fj,v) , v E H. 

Since tOj-k is nonnegative for j - k > 2 and 1 + 19i > 0 (by Lemma 2.iii), setting 
v = v; and using the Schwarz inequality and positivity of M we obtain (see (10)) 

I__ __12__ V 1 1Vj- I j-2?j-i 
if + ? Ivo I2 < i vjlv I + jFj I jvj I + (1 + 01) A2t- Ivi I + E At ik|lVi | 

AtAt At zA z t~ 
k=1 

Divide both sides by jvjj, multiply by A\t, and apply Lemma 2.iii to get (compare 
(12)) 

j-2 

(1 + 77o) jvj [ < ?7j-j |vo I + AtjFj I + (I + 01) jvjj1+ E ?j _ max Iv k I 
k=1 1?k~j-2 

<?7j-iAvoj+AttlFj + (1 +?no) lmkax j Vkj I j >1, 

while Ivil < Ivol + Z\tjF1j. Since (1 + ?7o>-l < 1 (see Lemma 2.i), we can apply 
Lemma 3. Summing the terms and using Lemma 2.ii, we obtain 

i \ i i 

< + ?i1j-l Ivo I + ZAtjFjI < C,(ti) voI + Z\ttFjI, 1 < i < n 
\ j=2 1 j=1 j=1 

and, hence, the conclusion of the lemma. O 

Note that, if we set Fj fj in (15), then Lemma 4 gives us directly the estimate 

< Cf~ti~20| + Atji|<C~ilo + if |{(s)Ids 
I 

1 < i < n, 
j=1 j= 

for the solution of (14). Hence, the following result holds. 

Corollary . If At is small, then the solutions of (14) satisfy 

Iuil < Cr(ti)|uo|+ f 1,0t 1 < i < 

3. CONVERGENCE RESULT 

In this section we define the fully discrete scheme and prove our main result, i.e., 
that this scheme is convergent. The fully discrete scheme is based on the difference 
scheme (14), which we apply to the weak form of the problem (1)-(3) 

(17) (ut, v) + (Lut, v) + a(u, v) = (f, v), v EvV Vt c I, 

(18) (U(0),v) = (Uo,v) , Vv E V. 

In what follows, we shall assume that 

(19) u E C(I; H) n L??(I; V) is the unique solution of (17)-(18) 

and additionally u E C2 (Q ), Utt E Ll (I; H2 (Q) n V). 

Now we specify the appropriate spatial discretization of the problem. Consider a 
finite element space Vh C V of piecewise linear functions based on a quasi-uniform 
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triangulation of the domain Q with parameter h. (We apply the standard construc- 
tion described, e.g., in the monograph [7].) The space Vh is of dimension Nh and 

is spanned by basis functions {4i=()}z. The mass and the stiffness matrices are 
defined respectively by 

def }h =(, 
C {Cim cim = (im Im) I 

def ,h A - {Aim h1 , Aim = a(bi, Om). 

Note that C as a Gram matrix is always nonsingular and A is positive definite. 
The matrix A is always at least positive semidefinite, even if we replace (2) by 
non-Dirichlet boundary conditions. 

We define the approximation U: I __ Vh of u as a function which is piecewise 

linear in the time variable based on the set of values U(tj) d U E Vh 0 <j < n. 
The latter are the solutions of the discrete problem 

(20) (OnfUjv) + Zr-k(OnUkv)+a(Ujv) = (fjIV),VvE Vh ,1 < j < n? 
k=1 

(21) (Uov) = (uo,v) ,Vv E Vh. 

The linear system (20) can be rewritten in the matrix-vector form 

j-1 

(22) BU3 = z\tF3 + CU3_1 + ?73_1CU0 + S ?3j-kCUk 
k=1 

def jdef ]'F where B = (1 + r7o)C + A\tA, F3 = k ,FJh]TFJ - (fj 4wk), and we 

identify Uj E Vh with Uj E RNh. With 7ro positive, the matrix B to be inverted is 
always nonsingular; hence, the approximations Uj, 0 < j < n, are well defined. 

Below we prove convergence of the approximation using the technique of elliptic 
projections introduced in [35] and apply the following well-known result, a conse- 
quence of the Nitsche argument (see, e.g., [7]). 

Lemma 5. Let a(., ) be defined as above. Then a(.,) is 0-regular and the projec- 
tion ii of u is well defined by 

ii(t) Ej vh a(u(t) - i(t), v) = O , lVVE Vh , V~t E I. 

If u satisfies (19), then ii is as smooth as u in the time variable, and the approxi- 
mation properties 

1u-fi < Oh2 11 u H2(Q) Vt eI, 

Ut-UtI < Oh2 | Ut H2(Q) , Vt eI, 

hold with a positive constant C independent of h, u. 

Now we prove the convergence rate estimate. 

Theorem . Let u satisfy (19). Let also (4), (5), (6) hold and A\t be sufficiently 
small. Then the approximation error satisfies the estimate 

def 2 
(23) a = max |u(tj)-Uj I < C(t + h) 

1<jwn 

with constant C independent of h, A~t. 



Proof. The approximation error can be represented as a sum of two terms estimated 
individually by 

max I u(tj) - Uj I < max I u(tj)-i(tj) I + max Ii lt(tj) - Uj ? < C1 (11 I uloc,2,T) h2 
1<j<n 1<j<n 1<j<rn 

+ C2 (CD, T, T, || uo IIH2(Q)), | Ut fl1,2,Ti || Utt 11,0,T) (At + h2), 

where we have used the approximation properties (see Lemma 5) to bound the 
first term and Lemma 6, to be proved below, for the second term. The constants 
C1, C2 depend on the problem data and its solution but are independent of the 
approximation parameters. Hence the inequality (23) follows. D 

We note that the convergence rate 0 (A\t+ h2) predicted by the Theorem is of the 
same order as the corresponding rate for the analogous discrete scheme defined for 
the heat diffusion equation (i.e., if T _ 0). Such a result for the diffusion equation is 
known to be optimal (see [35]). Our assumptions on the smoothness of the solution 
(19) are only slightly stronger than those required for convergence of approximation 
to the diffusion equation. 

Lemma 6. Let the assumptions of the Theorem hold. Then each (i = U- ii(t), 
1 < i < n, satisfies the estimate 

(il I< ? t (CD || Ut fl1,2,ti +T(ti) U| Utt fl,O,ti) 

+ h2C (ti)C (11UO flH2 (Q) + 11 Ut 111,2,ti) 

Proof. We omit the x-variable for simplicity of notation. Take 1 < j < n and 
v e Vh in (17), integrate both sides of the equation over Ii, use the definition of f 
and subtract the result from (20) multiplied by A\t to get 

j 

(UM - U3_1 ,v) - (u(tj) - u(tj_1),v) + Z hj-k(Uk - Uk-1, v) 
k=1 

(j (Lut)(s)ds, v) + a(zAtUj - j (s)ds, v) = 0 

Using Uk = 'k + ii(tk), 1 < k < j, we rewrite the last identity as 

(24) ((j -(j-1, v) + Erj-_k ((k-(k-1,V) +Ata((j, v) 
k=1 

- a(cej, v) + (u(tj) - U(tj-01V) - (ui(tj) -(tj_1 v) 

+ (] (Lut)(s)ds, v) - S ?j-k(u(tk) - ii(tk-1), v) 
Ij k=1 

where we denote aj = fi U(s)ds - Atu(tj). Note that from the definition of ii 

we have (Mcaj,v) = a(caj,v) = a(fJ U(s)ds - Z\ti(tj),v). Now, in order to rewrite 
(24) in a more convenient form, we combine the last two terms on its right-hand 
side, using the fact that Ek =I j k(fi(tk) - i(tk)) = I fj (Liit)(s)ds. Here, ii is 

the piecewise linear approximation (in the time variable) of ii, and by iit = (ii)t we 
mean its time derivative. (Note that (fl)t = (fit), i.e., fit is piecewise constant.) We 
shall use the decomposition 
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u(s) - ii(s) = (u(s) - s(s)) + (ii(s) -(s)) = g(s) + 3(s), 

from which, by g(tk) = U(tk) - U(tk) = 0 0 < k < n, there follows 

(u(tj) - U(tj-1)) - ((tij) - = j 3t(s)ds 

The identity (24) thus reads 

i 
(- -j-31 v) + S 7j-k((k - (k-1, V) + Ata(Qj, v) 

k=1 

= a(a%,v) + (j gt(s)ds, v) + (J(Lgt) (s)ds, v) + (j(L~t) (s)ds, v). 

If we divide both sides of this identity by A\t, it takes the (weak) form of the discrete 
equation for (j (compare e.g. (15), (16)) considered in Lemma 4, with the vector 
Fj defined by 

(25) AtFj = Mj + j (nt(s) + (Lgt)(s) + (L~t)(s))ds. 
Ij 

Directly applying the result of Lemma 4, we get 

(26) < ? CT (ti) 1o I + Z tLFj L 
j=j 

and now we need to find bounds for 4o and E3>=1 A\tIFj I. This is pursued below. 
By definition of UO and the approximation property (Lemma 5), we have 

l6 I = lUo - iio < Oh2 11 Uo IIH2(Q) 

For the first term in (25) we have 

Imaj I = j M(u(s) - u(tj))dsl < IM(u(s) - u(tj)) lds 

< CD J11 U(S) - U(t) ||H2(o) ds < CD J J ut(r) ||H2(o) drds 

< CDAtJ 11 Ut(S) ||H2(o) ds . 

For the second term in (25) we apply Lemma 5 to get 

I j (s) s ) -ds I(t)ds ? _j uts) ii(tj)?-hjs(t)H1) )dss 

I/(ut (s)- it (s)) dsI < /lut(s) - 4(s)Ids < Oh 2 /11 Ut(S) IIH2(o) ds. 
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For the remaining terms we have 

I (Lgt) (s) ds|< |(L Igt I) (s) ds, 

fj(Lgt)(s)dsf < j(LltI)(s)ds- 

The desired bounds follow from continuity of L (its norm on L1((0, ti)) equals T(ti)) 
combined with estimates for Igt I and Lgt j. These are the error between ut and its 
piecewise constant approximant (in the time variable) (ut) = (U)t, and the error 
between (it)t and its elliptic projection (l)t- = (iJ)t, respectively. The estimates for 
the latter then follow from Lemma 5, while the former is dealt with in a standard 
manner: 

jX (L~gtI)(s)ds= (LIgtI)(s)ds < T(ti) / Igt(s)fds < c(ti)At 11 utt I|l,O,ti, 
j=l jOO 

>j |(LI4t|)(s)ds (Llj t ?) (s)ds < T(ti) J | t(s)Ids 
j=1 j=l 

i 

< T(ti)Ch2 E f11 ilt(S) 1IH2 (Q) ds 
j=l I 

= T(ti)Ch2 S I u(tj) 
- 

(t j) IIH2(o) ds 

i t 

< T(ti)Ch2 E l j Jut(s)ds I1H2(Q) <T(ti)Ch2 j Ut(S) IIH2(0) ds. 

Hence, (26) leads to the estimate 

I|il < Cr(ti)Ch2 || 0 u|H2(Q) +CDAt 11 Ut 111,2,t, +Ch2 | Ut 111,2,ti 

+ AtT(ti) 11 Utt I|i,0,ti +7'(ti)Ch2 Ut 111,2,ti 

which completes the proof of the lemma. 

4. NUMERICAL EXPERIMENTS 

In order to verify the convergence rate estimates derived above, we performed 
numerical experiments in which the approximation error was measured for a given 
exact solution and an approximate solution calculated with the help of the discrete 
scheme (22). Our tests were made for two differential problems: the linear one as in 
the original problem (1)-(3) and a quasilinear one (see Example 3 below). In both 
cases we obtained a confirmation of the convergence rate predicted by the Theorem 
for the linear case. The convergence for the quasilinear problem is important in 
applications, e.g., it was used in calculations realized for coupled nonlinear models 
of flow in fissured media (see [26, 27]). 

We choose Q = (0, 1) x (0, 1), T = 1, and consider a function 

u(x, t) = sin(7rxl) sin(7rx2)uf (t), X = (Xl, X2) e Q.t e I, 

which is the exact solution of the problem (1)-(3) with uf(.) defined below. Note 
that u satisfies the homogeneous Dirichlet boundary condition on r and that u0 is 
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TABLE 1 

Examples 1 and 2 Example 3 
-i hi A~ti ni i-hi A~ti ni 
1 1/11 0.02 50 1 1/11 0.02 50 
2 1/15 0.0102041 98 2 1/15 0.0102041 98 
3 1/20 0.00552486 181 3 1/17 0.0078125 128 
4 1/30 0.0023753 421 4 1/20 0.00552486 181 
5 1/50 0.000832639 1201 5 1/30 0.0023753 421 

TABLE 2 

Ti T2 T3 

tCisz oCis oi 0-i 

1 0.0121171 1.9807 0.0114434 1.98187 0.00389853 2.00996 
2 0.00625372 1.9935 0.00590208 1.99396 0.00197916 2.00572 
3 0.00341042 2.02231 0.0032175 2.02016 0.00106884 1.9633 
4 0.00147038 1.98141 0.00138694 1.98251 0.000458784 2.00928 
5 0.000516142 1.99029 0.000486806 1.99084 0.000160696 2.00374 

determined by the choice of uf. The convolution kernel T is one of the following 
three arising in applications (see [14, 25]). 

(a) T7(t) 0, 
(b) T2(t) = e- - 

(c) T3(t) = 6Ek 1 e-k272t 

Note that in case (a) the problem (1)-(3) is equivalent to the heat equation, and in 
case (b) we are given a nonsingular kernel. In case (c), T3 is the indicated Fourier- 
Bessel series which is singular at the origin, and its values cannot be calculated 
exactly but only approximately. This is done by deleting the terms in the tail of the 
series, i.e., the summation includes only the first NT terms. Such an approximation 
gives satisfactory results when calculating values of T or of its integral T. However, 
it is not sufficient if we need values of any convolution integral T * g unless g is 
constant. 

The spatial domain Q is covered with a regular triangular finite element grid with 
discretization parameter h taking test values hi, 1 < i < 5 as in Table 1 (different 
test values for different examples). For each i we set the time step A\ti h? and 
set the appropriate number of time steps ni; next we solve (22) and calculate the 
approximation error oai defined by (23). In order to study the convergence rate, we 
first find h and &, which are geometric means of the values of hi, ai, respectively, 
and then we identify the exponent ;i according to the conjecture 

(hi )S _- 
h Uf 

Note that the Theorem predicts ;i = 2. 

Example 1. The function uf is set to uf (t) = t+ 1 and D -I, the identity tensor. 
The function f in (1)-(3) can be calculated analytically for each of the kernels 
T,, T2, T3. The corresponding approximate error and values of oui, ;i are presented in 
Table 2. 
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TABLE 3 

Ti T2 

function uf ti |i i 
1 0.000706362 1.90566 0.000697771 1.9044 
2 0.000380489 1.96338 0.000376127 1.96284 

f (t) = et 3 0.000211804 2.12632 0.000209504 2.13106 
4 9.27716e-05 1.9087 9.17606e-05 1.90763 
5 3.2836e-05 1.95219 3.24782e-05 1.95177 
1 0.0213288 1.98014 0.0200613 1.9818 
2 0.0110132 1.99367 0.0103489 1.99434 

fu(t) = e 3 0.00600413 2.01945 0.00563905 2.01641 
4 0.00258976 1.98084 0.00243161 1.98243 
5 0.000909263 1.98983 0.000853619 1.99061 

TABLE 4 

Ti T2 T3 _____ 

i ol i l i lai |_5, __ 

1 0.0065474 1.99746 0.0065474 2.05032 0.00369569 1.93658 
2 0.00333973 1.99079 0.00323035 1.95026 0.00193864 1.97514 
3 0.00255872 1.9744 0.00247508 1.76986 0.00149591 2.11339 
4 0.00181381 2.00883 0.00175457 2.05651 0.00106676 1.93342 
5 0.000783341 1.99133 0.000757843 2.00294 0.000464253 1.95902 

The results confirm the convergence claims of the Theorem. The approximation 
error 0i decays with hi" and ;i is close to 2, i.e., the rate of convergence is quadratic. 
Note that there is no essential difference between the results corresponding to Ti 

(i.e., the case of no memory effects) and the results corresponding to T2 or T3. Also, 
the approximation scheme gives results of the same quality for both kernels T2 and 
T3, i.e., the singularity of the kernel does not slow the convergence of the scheme. 

Example 2. With D as in Example 1, the function uf is set to be uf(t) = et or 
Uf (t) = e-t; the corresponding function f in (1)-(3) can be calculated analytically 
only for nonsingular kernels, i.e., for Ti and T2. The results collected in Table 3 
confirm the convergence claims. 

Example 3. In this example the differential problem to be solved is the quasilinear 
equation 

ut + Lut - V. (D(u)Vu) = f (x, t). 

Elements of the tensor D are dependent on the solution u by Dij (u) = 

&ij (u + 1) with Kronecker's symbol &ij. The corresponding numerical approxi- 
mation is defined in a way analogous to the linear case. The only modification 
concerns resolution of the dependence of the coefficient stiffness matrix A in (22) 
on the solution. This is achieved by the standard predictor-corrector procedure 
(see [35]) with two predictor-corrector steps. The approximation procedure is con- 
vergent, as is shown by the values of qi calculated for uf (t) = 1 + t as in Table 4 
and for uf(t) = et, Uf(t) = e-t as in Table 5. 
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TABLE 5 

Ti T2 

function uf ti oi 0-i 

1 0.00278412 1.96864 0.00270949 1.97002 
2 0.00144114 1.99197 0.00140062 1.98802 

fu(t) = et 3 0.0011072 2.06576 0.00107681 2.06676 
4 0.000785405 1.9825 0.000763785 1.98285 
5 0.00034055 1.97773 0.000331185 1.97777 
1 0.0141327 2.04897 0.0137326 2.04952 
2 0.00704049 2.00435 0.00683974 2.00475 

fu(t) = e, 3 0.00536171 1.85908 0.00520845 1.85889 
4 0.00377781 2.07936 0.00366939 2.08025 
5 0.00162383 2.01724 0.00157709 2.01761 

5. IMPLEMENTATION 

There are two main complexity issues in the implementation of the numerical 
algorithm for solution of the problem (22). The first is the amount of computer 
memory necessary to keep track of the "history" of the process. The second is 
related to the time spent on the solution of the linear system (22) which can be de- 
creased via an implementation in a multiprocessing environment. Below we discuss 
both issues. 

The history of the process expressed by the convolution integral in the continuous 
problem requires that the values of u(t) for 0 < t < T depend on the values of the 
derivative of the solution ut(s) in the whole interval s E (0, t). In the language of 
the discrete solution it means that in order to calculate the right-hand side of (22) 
at the jth time layer, all the vectors Uk, 0 < k < j have to be "accessible" to the 
numerical algorithm, so we must keep them stored in memory. This requirement 
dramatically increases the amount of memory necessary for the implementation 
of the algorithm. In contrast, in the case of the heat equation one needs only to 
store values from the previous time layer, i.e., only one solution vector instead of j 
vectors as in the "memory effects" case. 

The storage problem, as an important complexity issue, had been seriously con- 
sidered in [20, 24, 31, 34]. These theoretical results apply to the integrals with 
bounded kernels, except for those presented in [34], which however rely on an ex- 
plicit formula for the kernel. As mentioned in the Introduction, the convolution 
kernels for the class of problems considered in this paper arise from some auxiliary 
differential problem and are usually singular. Their values in general are available 
only by numerical approximation, see [25, 27]). The general solution for the storage 
issue applicable in the singular kernel case is still to be sought. Below we supply 
some remarks concerning the practical solution to this issue. 

One way to avoid storing all the time layer vectors would be to explicitly cut off 
in (22) all the calculations involving time layers which are "far enough" from the 
current time layer. Practically, we do this by setting the coefficients 'Or = 0 either 
if (a) 'Or < e or if (b) r > nr; the barrier parameters (new) are set appropriately 
to the data of the problem. In other words, we use perturbed values of coefficients 
'Or. The well-posedness of the problem implies that the perturbed values of r 
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introduce a continuous perturbation in the approximation error. However, the 
values of '0r for fixed At are related rather to the derivative of r and not to r, 
and our numerical experiments show that one should be very careful with deciding 
which time layers are to be taken into account or ignored while calculating the 
"history of the diffusion." If we follow approach (a), then in the extreme cases a 
careless choice of e may even prevent convergence. With decreasing discretization 
parameters the barrier value for '0r is very soon reached, even for a singular kernel. 
Then the number of layers taken into account may not be big enough to guarantee 
convergence. Hence, an individual choice of appropriate e fitting the discretization 
parameters and convolution kernel is necessary. 

In the case (b) the best strategy, according to our numerical experiments, is to 
set a fixed ratio between the number of layers to be included in calculations and the 
total number of layers, for example 1/2. Then the approximation error decays, but 
the price paid for the memory savings is slower convergence than that predicted by 
the Theorem. 

Another approach to this issue might be to use some implementation-specific 
tricks that avoid the direct storage in the computer memory. In certain computing 
environments some cache or register memory devices (faster than the disk storage 
devices) are available, which might provide secondary storage for the time layer 
vectors. Additionally, in a multiprocessing environment, a process calculating the 
discrete convolution term using the time layer vectors stored aside can execute in 
parallel to other components of the algorithm. 

The second complexity issue, i.e., that of the linear system solver, can be effi- 
ciently resolved with use of a multiprocessing computing environment as well. We 
describe our results concerning this issue below. 

The linear system (22) is a system with a sparse positive definite matrix B. We 
solve it by the Schwarz Alternative Method of Additive Type (SAM) which is a do- 
main decomposition (DD) method belonging to parallelizable PCG (preconditioned 
conjugate gradient) methods (see [8, 9, 10] and references therein). In this method 
the spatial domain of the differential problem, which is discretized with a fine grid, 
is split into subdomains forming a coarse grid. The problem is delegated to solvers 
executing in parallel and corresponding to the overlapping subdomains, with an 
additional solver operating on the coarse mesh and providing the global exchange 
of information between subdomains. The method is effective for linear systems 
arising from elliptic 2D and 3D problems (see [11] or [5]) as well as for parabolic 
problems, where in most cases no coarse mesh solver is necessary (see [4, 8, 9]). 
The algorithm can be implemented very well in multiprocessing environments (see 

[11, 13]). 
Our results show that SAM applies equally well to the problem (22) as it does to 

the algebraic problems arising from the heat equation. This is to be expected since 
the performance of the method depends on the conditioning of the linear system 
matrix B, which is even better for nontrivial r than for r _ 0. For details on 
implementation, see [25]. 

6. APPENDIX 

Below we prove the continuous stability result for the general case of possibly 
singular convolution kernels. This result is given for completeness, since in Section 2 
we considered (for the sake of exposition) only the case of kernels defined at the 
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origin. The proof relies on a particular property of the convolution operator, and 
this is demonstrated in the sequel. 

Lemma 7. Let r satisfy (4). Let also u be a solution of (7)-(8). Then u satisfies 

IU(t) <? Cr(t)IuoI + C 11 f 112,0,t 

Proof. Multiply (7) by u and integrate the resulting identity over Q to obtain 

+ (Lut, u) + (Mu,u) = (fu) , t > 0. 
2 dt 

This identity, after integration over (0, t), gives 

(27) -IUMt)1 -1Xl + QH (t,,,u) + i;(Mu, ul)ds =;(f su)ds, 2 21 ~ ~ 

where we have denoted 

(28) QH(t, ,u) d=f j(Lut u)Hds = ((r * ut) (S), u(s))ds. 

Lemma 8 contains the result giving us the lower bound QH (t,'r, u) > -T(t) 2U(0) 12. 
On the other hand, V-coercivity of the form a(., ) associated with M yields 
(Mu,u) = a(u,u) > Ca u -2> W u 2* Combining the estimates above and 

using the Schwarz inequality, we get 

U(t)l2?-y2 j u(s)l2ds < I UOl2(T(t)+1)+ ? j f(s)F~ds+E j u(s)l2ds. 

With e = 2 la in the inequality ab < 1 a2 + ' b2, we conclude 

IU(t)12 < C (t)Iuo 2 ? ?' j; f(s)12ds, 

hence, the conclusion of the lemma. E 

In the lemma below we adopt notation for functions and measures as in [12], 
where general properties of monotone kernels are considered. In particular, we 
use v' to denote the derivative of a (locally absolutely continuous) function v with 
respect to the time variable. The proof of the lemma follows the idea sketched in 
[12]. (See for example Lemma 18.4.1, p. 574, in this reference.) 

Lemma 8. Let r satisfy (4). Then for v E H1 (I; H) and QH (t,,v) defined by 
(28) it follows that 

(29) QH(t,Tr, v) >- 2 v(0)12. 

Proof. First we prove the counterpart of (29) for real-valued functions v E H1 (I) 
and QR(t, A, v), i.e., we want to prove 



FEM FOR DIFFUSION EQUATIONS WITH CONVOLUTION TERMS 1035 

(30) QR (ti 71 V) = A (T * v') (s) V (s) ds > 
T- ) (v (0))2. 

Note that, if r is nonsingular, we can write r * vI =-r(t)v(O) + 'r(O)v(t) + 'r * v. 
In the general case of r singular at the origin we reformulate r * v' similarly, using 
the (Borel) measure -y obtained as the (distribution) derivative of r. Formally, we 
have -y((O, t)) = r(t) at all points of continuity of T, i.e., for t > 0. This implies 
(f * r)' f * -y for any L2(I) integrable f, and in addition we derive 

'r * v1 = -T(t)v(0) + (v * T)' = -r(t)v(0) + v * 

Now rewrite QR(t, r, v) and apply the identity ab = a2 + b2 - '(a - b)2 to get 

it 

(31) QR(t, r, v) = j(v * )(s)v(s)ds 

- -Xj v(0)v(s)'r(s)ds + J v(s)v(s - r)y(dr)ds 

= _ 1 j v (0)r (s)ds - - v (s)r (s)ds + 2 j(v(0)-v(s))%(s)ds 

+ 1 j v2(s) i '(dr)ds + v v2(S - r)y(dr)ds 
2 0, [S] 2 o [,S] 

-- 1J i2 (v(s) - v(s - 
r))2 y(dr)ds. 2 o 0,81 

The definition of -y implies that the second and the fourth terms cancel. Moreover, 
for the fifth term we have 

ot r t 
J 12/s} v2(S - r)-y(dr)ds ( (v2*y)*(s)ds 

it it 
= j (V2 * T)'(s)ds = j v2 (t - s)T(s)ds, 

so we can write 

= 1V2 ft V(0 () , (32) QR(t,, v)=--v (0) r T(s)ds + - (O v(s))(s)ds 2 Jo2 

+ j v2 (t -s)r(s)ds - } j(v(r) - v(r -_s))2dr-y(ds), 2 2 [0,t] 

where the last term is obtained from the sixth term in (31) by a change of the order 
of integration. 

With the first term on the right-hand side of (32) equal to our desired lower 
bound in (30), it remains to prove that the remaining terms on the right-hand side 
of (32) are nonnegative. This observation is trivial for the second and the third 
terms. For the last term it follows from the fact that on (0, t) the measure -y is 
negative. Also, although -y contains a positive point mass at zero, at s = 0 the 
value of the integrand (v(r) - v(r - s)) becomes 0. Hence (30) is proved. 

In order to obtain (29), we integrate the inequality (30) (it is satisfied for v(x) at 
every x E Q treated as a parameter) over Q and get the desired inequality involving 
the scalar product in H. D 



1036 MALGORZATA PESZYNSKA 

ACKNOWLEDGEMENTS 

This paper is based in part on research done while the author was on leave 
in 1991-92 at the University of Augsburg and supported by a DAAD fellowship, 
and which was presented in the author's Ph.D. thesis written under the scientific 
guidance of Prof. Dr. K.-H. Hoffmann. The author was also partially supported 
by the grant 2-1168-91-01 of the Polish Scientific Research Committee (KBN). 
The numerical experiments were performed on the IBM R600 workstation at the 
University of Augsburg, also on the cluster of Sun workstations at the Systems 
Research Institute, and on the Evans-Sutherland computer in Warsaw University. 

The author wishes to express her thanks to the referee whose remarks have helped 
to improve the manuscript and drew attention to some additional interesting issues 
to be investigated. 

REFERENCES 

1. T. Arbogast, Analysis of the Simulation of Single Phase Flow Through a Naturally Fractured 
Reservoir, SIAM J. Numer. Anal. 26 (1989), 12-29. MR 90e:76122 

2. T. Arbogast, J. Douglas (Jr.), Dual-Porosity Models for Flow in Naturally Fractured Reser- 
voirs, In "Dynamics of Fluids in Hierarchical Porous Media," J. H. Cushman, ed., Academic 
Press, London, 1990, 177-221. 

3. T. Arbogast, J. Douglas (Jr.), U. Hornung, Derivation of the Double Porosity Model of Single 
Phase Flow via Homogenization Theory, SIAM J. Math. Anal. 21 (1990), 823-836. MR 
91d:76074 

4. Xiao Chuan Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations, 
Numer. Math. 60 (1991), 41-61. MR 93a:65127 

5. Xiao Chuan Cai, W.D. Gropp, D.E. Keyes, Convergence rate estimate for a domain decom- 
position method, Numer. Math. 61 (1992), 153-169. MR 92k:65181 

6. C. Chen, V. Thomee, L. B. Wahlbin, Finite element approximation of a parabolic integro- 
differential equation with a weakly singular kernel, Math. Comp. 58 (1992), 587-602. MR 
93g:65120 

7. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, (1978) North-Holland. MR 
58:25001 

8. M. DryJa, 0. Widlund, An Additive Variant of the Schwarz Alternating Method for the Case of 
Many Subregions, Technical Report 339, Department of Computer Science, Courant Institute 
of Mathematical Sciences, New York, December 1987. 

9. M. Dryja, O.B. Widlund, Some Domain Decomposition Algorithms for Elliptic Problems, in: 
Iterative Methods for Large Linear Systems, Academic Press, 1990. CMP 90:07 

10. Domain Decomposition Methods for Partial Differential Equations, Proceedings of the First 
International Symposium on Domain Decomposition Methods for Partial Differential Equa- 
tions, R. Glowinski, G. H. Golub, G. A. Meurant, J. Periaux eds., Paris, France, January, 
1987, SIAM, Philadelphia, 1988. 

11. A. Greenbaum, Congming Li, Han Zheng Cao, Parallelizing Preconditioned Conjugate Gra- 
dient Algorithms, Technical Report, Courant Institute, 1988. 

12. G. Gripenberg, S.-O. Londen, 0. Staffans, Volterra Integral and Functional Equations, Cam- 
bridge University Press, Cambridge, 1990. MR 91c:45003 

13. K.H. Hoffmann, J. Zou, Parallel efficiency of domain decomposition methods, Parallel Com- 
puting 19 (1993), 1375-1392. 

14. U. Hornung, R. E. Showalter, Diffusion Models for Fractured Media, Jour. Math. Anal. Appl. 
147 (1990), 69-80. MR 91d:76072 

15. Y. Lin, V. Thomee, L. B. Wahlbin, Ritz-Volterra projections to finite element spaces and 
applications to integrodifferential and related eqautions, SIAM J. Numer. Anal. 28 (1991), 
1047-1070. MR 92k:65193 

16. P. Linz, Analytical and Numerical Methods for Volterra Equations, (1985) SIAM, Philadel- 
phia. MR 86m:65163 

17. C. Lubich, Convolution Quadrature and Discretized Operational Calculus, Parts I & 2, Nu- 
mer. Math. 52 (1988), 129-145 & 413-425. MR 89g:65018; MR 89g:65019 



FEM FOR DIFFUSION EQUATIONS WITH CONVOLUTION TERMS 1037 

18. R. C. MacCamy, J. S. Wong, Stability Theorems for Some Functional Equations, Trans. Amer. 
Math. Soc. 164 (1972), 1-37. MR 45:2432 

19. Maria-Luisa Mascarenhas, A linear homogenization problem with time dependent coefficient, 
Trans. Amer. Math. Soc 281 (1984), 179-195. MR 85c:45002 

20. V. McLean, V. Thomee, L.B. Wahlbin, Discretization with variable time steps of an evolu- 
tion equation with a positive type memory term, Applied Mathematics Report AMRR 93.18, 
December 1993 School of Math., The University of New South Wales. 

21. R. K. Miller, An integrodifferential equation for rigid heat conductors with memory, Jour. 
Math. Anal. Appl. 66 (1978), 313-332. MR 80g:45015 

22. B. Neta, Numerical Solution of a Nonlinear Integro-differential Equation, Jour. Math. Anal. 
Appl. 89 (1982), 598-611. MR 84a:65105 

23. J. W. Nunziato, On heat conduction in materials with memory, Quarterly Appl. Math. 29 
(1971), 187-204. MR 45:4749 

24. A.K. Pani, V. Thomee, L.B. Wahlbin, Numerical methods for hyperbolic and parabolic inte- 
grodifferential equations, J. Integral Equations Appl. 4 (1992), 533-584. MR 94c:65167 

25. M. Peszynska, Fluid Flow Through Fissured Media. Mathematical Analysis and Numerical 
Approach, Ph. D. Thesis (1992), University of Augsburg. 

26. M. Peszynska, Finite element approximation of a model of nonisothermal flow through fissured 
media, in: Finite Element Methods, M. Kfizek, P. Neittaanmaiki, R. Stenberg (Eds), Marcel 
Dekker, 1994, 357-366. 

27. M. Peszyiska, On a model for nonisothermal flow in fissured media, Differential Integral 
Equations 8 (1995), 1497-1516. CMP 95:12 

28. M. Peszyfiska, Analysis of an integro-differential equation arising from modelling of flows 
with fading memory through fissured media, J. Partial Diff. Eqs. 8 (1995), 159-173. MR 
96a:45007 

29. A.H. Schatz, V. Thomee, W.L. Wendland, Mathematical Theory of Finite and Boundary 
Element Methods, Birkhduser, Basel-Boston-Berlin, 1990. MR 92f:65004 

30. R. E. Showalter, Distributed Microstructure Models of Porous Media, in: "Flow in Porous 
Media: proceedings of the Oberwolfach conference, June 21-27, 1992", J. Douglas Jr. and U. 
Hornung, eds., Birkhduser, Basel, 1993, 155-163. MR 95a:76091 

31. I. H. Sloan, V. Thomee, Time Discretization of an Integro-Differential Equation of Parabolic 
Type, SIAM J. Numer. Anal. 23 (1986) 1052-1061. MR 87j:65113 

32. L. Tartar, Nonlocal effects induced by homogenization, in: "Partial Differential Equations and 
the Calculus of Variations, Essays in Honor of Ennio de Giorgi," F. Colombini et. al., eds., 
Birkhhuser, Boston, 1989, 925-938. MR 91c:35018 

33. L. Tartar, Memory effects and homogenization, Arch. Rat. Mech. Anal. 111 (1990), 121-133. 
MR 92h:35019 

34. V. Thomee, L. B. Wahlbin, Long time numerical solution of a parabolic equation with memory, 
Dept. of Math, Chalmers University of Technology, The University of G6teborg, Preprint No 
1992-12/ISSN 0347-2809 

35. M. F. Wheeler, A Priori L2 Error Estimates for Galerkin Approximations to Parabolic Partial 
Differential Equations, SIAM J. Numer. Anal., 10 (1973), 723-759. MR 50:3613 

36. Nai-ying Zhang, On fully discrete Galerkin approximations for partial integro-differential 
equations of parabolic type, Math. of Comp. 60 (1993) 133-166. MR 93d:65088 

SYSTEMS RESEARCH INSTITUTE, POLISH ACADEMY OF SCIENCES, UL. NEWELSKA 6 01-447 
WARSZAWA, POLAND 

E-mail address: mpeszIibspan .waw. pl 


	Cit r119_c119: 
	Cit r151_c151: 


